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Abstract: We consider the swinging Atwood machine that is a conservative Hamiltonian sys-

tem with two degrees of freedom. In general, it is not integrable but there exists a periodic 

solution of the equations of motion describing oscillations of the bodies near some equilibrium 

positions. An interesting peculiarity of this state of dynamic equilibrium is that owing to oscil-

lations a body of smaller mass balances a body of larger mass. Analysing the system motion in 

the neighbourhood of this equilibrium, we have shown that it is stable in linear approximation. 

Thus, the swinging Atwood machine is an example of mechanical system the equilibrium state 

of which is stabilized by oscillations. 
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1. Introduction  

The swinging Atwood machine (SAM) consists of two masses 𝑚1, 𝑚2 = 𝑚1(1 + 𝜀) attached to oppo-

site ends of a massless inextensible thread wound round two massless frictionless pulleys of negligible 

radius (see Fig. 1). The mass 𝑚2 is constrained to move only along a vertical while mass 𝑚1 is allowed 

to oscillate in a plane and it moves like a pendulum of variable length. Such a system has two degrees 

of freedom and its Hamiltonian function may be written in the form  
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2𝑟2 + (1 + 𝜀)𝑟 − 𝑟 cos 𝜑, (1) 

 

where two variables 𝑟, 𝜑 describe geometrical configuration of the system, and 𝑝𝑟 , 𝑝𝜑 are the two 

corresponding canonically conjugate momenta. 

 

 

Fig. 1. The swinging Atwood machine with two small pulleys 

Equations of motion of the SAM determined by the Hamiltonian (1) are essentially nonlinear, and 

their general solution cannot be found in symbolic form. Numerical analysis of the equations of motion 



 

has shown that, depending on the mass ratio and initial conditions, the SAM can demonstrate different 

types of motion (see [1, 2]). In particular, there exists a periodic solution of the equations of motion 

which may be represented in the form of power series in a small parameter 𝜀 (see [3]) 

       𝑟𝑝(𝑡) = 1 +
𝜀

16
(1 + 6 cos(2𝑡)) −

𝜀2

2048
(261 + 276 cos(2𝑡) + 105 cos(4𝑡)) + ⋯,             (2) 

  𝜑𝑝(𝑡) = √𝜀 (2 cos 𝑡 −
53𝜀

192
cos(3𝑡) +

𝜀2

16384
(2959 cos 𝑡 + 1699 cos(3𝑡) +

5813

5
cos(5𝑡)) + ⋯ ).   (3) 

The existence of periodic solution (2)-(3) means that for given value of parameter 𝜀 one can choose 

such initial conditions that the system is in the state of dynamical equilibrium when the bodies oscillate 

near some equilibrium positions. Note that for 𝜀 > 0 the system under consideration has no a state of 

static equilibrium when the coordinates 𝑟(𝑡), 𝜑(𝑡) are some constants. The main purpose of this talk is 

to investigate whether the system will remain in the neighbourhood of the equilibrium if the initial 

conditions are perturbed or whether the periodic solution (2)-(3) is stable. 

2. Stability Analysis 

To investigate stability of periodic solution (2)-(3) we introduce small perturbations 𝑞1, 𝑝1, 𝑞2, 𝑝2 of 

the solution and expand the Hamiltonian (1) into power series in terms of 𝑞1, 𝑝1, 𝑞2, 𝑝2 up to the second 

order inclusive. Then equations of the perturbed motion may be written in linear approximation in the 

canonical form with the Hamiltonian 
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where 𝑝𝜑0 is the momentum canonically conjugate to solution 𝜑𝑝. It is clear that the perturbed motion 

of the system is determined by the linear system of four differential equations with periodic coefficients, 

and their general properties have been studied quite well (see [4]). The behavior of solutions to such 

equations is determined by its characteristic exponents which may be found in the form of power series 

in 𝜀. Doing necessary symbolic computations, we have found two pairs of purely imaginary character-

istic exponents up to the second order in 𝜀 

 𝜆1,2 = ±𝑖,   𝜆3,4 = ±𝑖
√3𝜀

2
(1 −

17𝜀

32
+

85

256
𝜀2).  

According to Floquet-Lyapunov theory (see [4]), the corresponding solutions to differential equa-

tions with periodic coefficients describe the perturbed motion of the system in the bounded domain in 

the neighbourhood of the periodic solution (2)-(3). It means that this solution is stable in linear approx-

imation, and so the SAM is an example of mechanical system the equilibrium state of which is stabilized 

by oscillations. 
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